enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pressure head - Wikipedia

    en.wikipedia.org/wiki/Pressure_head

    Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids:

  3. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is the kinetic energy per unit volume of a fluid. Dynamic pressure is one of ... the differential pressure head can be used to calculate the ...

  4. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    The total hydraulic head of a fluid is composed of pressure head and elevation head. [1] [2] The pressure head is the equivalent gauge pressure of a column of water at the base of the piezometer, and the elevation head is the relative potential energy in terms of an elevation. The head equation, a simplified form of the Bernoulli principle for ...

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Darcy–Weisbach equation calculator; Pipe pressure drop calculator Archived 2019-07-13 at the Wayback Machine for single phase flows. Pipe pressure drop calculator for two phase flows. Archived 2019-07-13 at the Wayback Machine; Open source pipe pressure drop calculator. Web application with pressure drop calculations for pipes and ducts

  6. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  7. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.

  8. Affinity laws - Wikipedia

    en.wikipedia.org/wiki/Affinity_laws

    Volume flow rate: = () Head or pressure gain: ... is the pressure or head developed by the fan/pump ... or if a high level of accuracy is required in the calculation.

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)