Search results
Results from the WOW.Com Content Network
Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue. In contrast to bilinear interpolation, which only takes 4 pixels ...
Examples of algorithms for this task include New Edge-Directed Interpolation (NEDI), [1] [2] Edge-Guided Image Interpolation (EGGI), [3] Iterative Curvature-Based Interpolation (ICBI), [citation needed] and Directional Cubic Convolution Interpolation (DCCI). [4] A study found that DCCI had the best scores in PSNR and SSIM on a series of test ...
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
Bicubic splines (Bicubic interpolation) are often used to interpolate data on a regular rectangular grid, such as pixel values in a digital image or altitude data on a terrain. Bicubic surface patches, defined by three bicubic splines, are an essential tool in computer graphics. Cubic splines are often called csplines, especially in computer ...
Multivariate interpolation is the interpolation of functions of more than one variable. Methods include nearest-neighbor interpolation, bilinear interpolation and bicubic interpolation in two dimensions, and trilinear interpolation in three dimensions. They can be applied to gridded or scattered data.
After the preprocessing above, evaluation of the interpolated spline is equivalent to cubic Hermite spline, using the data , , and for =, ….. To evaluate at , find the index in the sequence where , lies between , and +, that is: +.
In the field of image processing, stairstep interpolation is a widely employed method technique for interpolating pixels after enlarging an image. The fundamental concept is to interpolate multiple times, in small increments, using any interpolation algorithm that is better than nearest-neighbor interpolation such as; bilinear interpolation, and bicubic interpolation.
Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .