enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    3.7 Complex functions. 3.8 Continued fractions. 3.9 Iterative algorithms. 3.10 Asymptotics. ... A History of Pi; In culture; Indiana pi bill; Pi Day;

  3. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  4. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...

  5. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.

  6. Wallis product - Wikipedia

    en.wikipedia.org/wiki/Wallis_product

    Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series for π. S n is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times.

  7. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    The Chinese mathematician Liu Hui in 263 CE computed π to between 3.141 024 and 3.142 708 by inscribing a 96-gon and 192-gon; the average of these two values is 3.141 866 (accuracy 9·10 −5). He also suggested that 3.14 was a good enough approximation for practical purposes.

  8. Proof that 22/7 exceeds π - Wikipedia

    en.wikipedia.org/wiki/Proof_that_22/7_exceeds_π

    The purpose of the proof is not primarily to convince its readers that ⁠ 22 / 7 ⁠ (or ⁠3 + 1 / 7 ⁠) is indeed bigger than π. Systematic methods of computing the value of π exist. If one knows that π is approximately 3.14159, then it trivially follows that π < ⁠ 22 / 7 ⁠, which is approximately 3.142857.

  9. Diophantine approximation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_approximation

    The equivalence may be read on the regular continued fraction representation, as shown by the following theorem of Serret: Theorem: Two irrational numbers x and y are equivalent if and only if there exist two positive integers h and k such that the regular continued fraction representations of x and y