Search results
Results from the WOW.Com Content Network
Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic dimension to its wavelength:
The Tyndall effect is light scattering by particles in a colloid such as a very fine suspension (a sol). Also known as Tyndall scattering, it is similar to Rayleigh scattering, in that the intensity of the scattered light is inversely proportional to the fourth power of the wavelength, so blue light is
Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.
The grey/white colour of the clouds is caused by Mie scattering by water droplets, which are of a comparable size to the wavelengths of visible light. Rayleigh scattering describes the elastic scattering of light by spheres that are much smaller than the wavelength of light. The intensity I of the scattered radiation is given by
Light scattering in liquids and solids depends on the wavelength of the light being scattered. Limits to spatial scales of visibility (using white light) therefore arise, depending on the frequency of the light wave and the physical dimension (or spatial scale) of the scattering center. Visible light has a wavelength scale on the order of 0.5 μm.
Wine glass in LCD projectors light beam makes the beam scatter.. In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass.
Bragg scattering of visible light by colloids [ edit ] A colloidal crystal is a highly ordered array of particles that forms over a long range (from a few millimeters to one centimeter in length); colloidal crystals have appearance and properties roughly analogous to their atomic or molecular counterparts. [ 8 ]
The 46° halo was first explained as being caused by refractions through ice crystals in 1679 by the French physicist Edmé Mariotte (1620–1684) in terms of light refraction [1] Jacobowitz in 1971 was the first to apply the ray-tracing technique to hexagonal ice crystal. Wendling et al. (1979) extended Jacobowitz's work from hexagonal ice ...