enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as follows:

  4. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]

  5. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    One of the earliest results in set theory, published by Cantor in 1874, was the existence of different sizes, or cardinalities, of infinite sets. [2] An infinite set is called countable if there is a function that gives a one-to-one correspondence between and the natural numbers, and is uncountable if there is no such correspondence function.

  6. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    All subsets of a set S (all possible choices of its elements) form the power set P(S). Georg Cantor proved that the power set is always larger than the set, i.e., |P(S)| > |S|. A special case of Cantor's theorem is that the set of all real numbers R cannot be enumerated by natural numbers, that is, R is uncountable: |R| > |N|.

  7. Enumeration - Wikipedia

    en.wikipedia.org/wiki/Enumeration

    A set is countable if it can be enumerated, that is, if there exists an enumeration of it. Otherwise, it is uncountable. For example, the set of the real numbers is uncountable. A set is finite if it can be enumerated by means of a proper initial segment {1, ..., n} of the natural numbers, in which case, its cardinality is n.

  8. Almost all - Wikipedia

    en.wikipedia.org/wiki/Almost_all

    The set of rational numbers is countable, so almost all real numbers are irrational. [12] Georg Cantor's first set theory article proved that the set of algebraic numbers is countable as well, so almost all reals are transcendental. [13] [sec 6] Almost all reals are normal. [14] The Cantor set is also null. Thus, almost all reals are not in it ...

  9. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.