Search results
Results from the WOW.Com Content Network
Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.
Damping controls the travel speed and resistance of the vehicle's suspension. An undamped car will oscillate up and down. With proper damping levels, the car will settle back to a normal state in a minimal amount of time. Most damping in modern vehicles can be controlled by increasing or decreasing the resistance to fluid flow in the shock ...
d MT = braking distance, m (ft) V = design speed, km/h (mph) a = deceleration rate, m/s 2 (ft/s 2) Actual braking distances are affected by the vehicle type and condition, the incline of the road, the available traction, and numerous other factors. A deceleration rate of 3.4 m/s 2 (11.2 ft/s 2) is used to determine stopping sight distance. [6]
0 to 100 km/h (0 to 60 mph) seconds seconds seconds acceleration: lower is better 0 to 100 to 0 mph seconds seconds seconds acceleration and braking: lower is better formerly common in British publications Autonomy: miles miles kilometers comfort, safety, economics, range higher is better Autonomous means self-governing. [1]
The steering pivot points [clarification needed] are joined by a rigid bar called the tie rod, which can also be part of the steering mechanism, in the form of a rack and pinion for instance. With perfect Ackermann, at any angle of steering, the centre point of all of the circles traced by all wheels will lie at a common point.
A torsion bar suspension, also known as a torsion spring suspension, is any vehicle suspension that uses a torsion bar as its main weight-bearing spring. One end of a long metal bar is attached firmly to the vehicle chassis; the opposite end terminates in a lever, the torsion key, mounted perpendicular to the bar, that is attached to a ...
Foundation components are the brake-assembly components at the wheels of a vehicle, named for forming the basis of the rest of the brake system. These mechanical parts contained around the wheels are controlled by the air brake system. The three types of foundation brake systems are “S” cam brakes, disc brakes and wedge brakes. [3]
The BHI of the Hydractive 3 suspension calculates the optimum vehicle height, using the following information: Vehicle speed; Front and rear vehicle heights; The 3+ Hydractive hydraulic suspension has 3 automatic modes: Motorway position (lowering by 15 mm of the vehicle height above 110 km/h)