Search results
Results from the WOW.Com Content Network
The biologically inspired Hodgkin–Huxley model of a spiking neuron was proposed in 1952. This model describes how action potentials are initiated and propagated. . Communication between neurons, which requires the exchange of chemical neurotransmitters in the synaptic gap, is described in various models, such as the integrate-and-fire model, FitzHugh–Nagumo model (1961–1962), and ...
The spiking neuron model by Nossenson & Messer [72] [73] [74] produces the probability of the neuron firing a spike as a function of either an external or pharmacological stimulus. [72] [73] [74] The model consists of a cascade of a receptor layer model and a spiking neuron model, as shown in Fig 4. The connection between the external stimulus ...
The firing neuron described above is called a spiking neuron. We will model the electrical circuit of the neuron in Section 3.6. There are two types of spiking neurons. If the stimulus remains above the threshold level and the output is a spike train, it is called the Integrate-and-Fire (IF) neuron model.
A model of a biological neuron is a mathematical description of the properties of nerve cells, or neurons, that is designed to accurately describe and predict its biological processes. One of the most successful neuron models is the Hodgkin–Huxley model, for which Hodgkin and Huxley won the 1963
The Galves–Löcherbach model (or GL model) is a mathematical model for a network of neurons with intrinsic stochasticity. [ 1 ] [ 2 ] In the most general definition, a GL network consists of a countable number of elements (idealized neurons ) that interact by sporadic nearly-instantaneous discrete events ( spikes or firings ).
The spike response model (SRM) [1] is a spiking neuron model in which spikes are generated by either a deterministic [2] or a stochastic [1] threshold process. In the SRM, the membrane voltage V is described as a linear sum of the postsynaptic potentials (PSPs) caused by spike arrivals to which the effects of refractoriness and adaptation are added.
CoDi is a cellular automaton (CA) model for spiking neural networks (SNNs). [1] CoDi is an acronym for Collect and Distribute, referring to the signals and spikes in a neural network. CoDi uses a von Neumann neighborhood modified for a three-dimensional space; each cell looks at the states of its six orthogonal neighbors and its own state.
The following example simulates spiking activity in a sparse random network with recurrent excitation and inhibition [1] The figure shows the spiking activity of 50 neurons as a raster plot. Time increases along the horizontal axis, neuron id increases along the vertical axis. Each dot corresponds to a spike of