Search results
Results from the WOW.Com Content Network
Conversion of simple disulfides to thiosulfinates results in a considerable weakening of the S–S bond from about 47.8 to 28.0 kcal mol −1 for the S-S bond in PhS(O)SPh and from about 63.2 to 39.3 kcal mol −1 for the S-S bond in MeS(O)SMe, [14] with the consequence that most thiosulfinates are both unstable and quite reactive.
Thiosulfate (IUPAC-recommended spelling; sometimes thiosulphate in British English) is an oxyanion of sulfur with the chemical formula S 2 O 2− 3.Thiosulfate also refers to the compounds containing this anion, which are the salts of thiosulfuric acid, such as sodium thiosulfate Na 2 S 2 O 3 and ammonium thiosulfate (NH 4) 2 S 2 O 3.
Sodium thiosulfate (sodium thiosulphate) is an inorganic compound with the formula Na 2 S 2 O 3 ·(H 2 O) x. Typically it is available as the white or colorless pentahydrate (x = 5), which is a white solid that dissolves well in water.
The 5-membered ring compounds containing two heteroatoms, at least one of which is nitrogen, are collectively called the azoles. Thiazoles and isothiazoles contain a sulfur and a nitrogen atom in the ring. Dithioles have two sulfur atoms. A large group of 5-membered ring compounds with three or more heteroatoms also exists.
Potassium thiosulfate is an inorganic compound with the formula K 2 S 2 O 3. This salt can form multiple hydrates, such as the monohydrate, dihydrate, and the pentahydrate, all of which are white or colorless solids. [ 1 ]
Sulfur shares the chalcogen group with oxygen, selenium, and tellurium, and it is expected that organosulfur compounds have similarities with carbon–oxygen, carbon–selenium, and carbon–tellurium compounds. A classical chemical test for the detection of sulfur compounds is the Carius halogen method.
A carbon–nitrogen bond is a covalent bond between carbon and nitrogen and is one of the most abundant bonds in organic chemistry and biochemistry. [ 1 ] Nitrogen has five valence electrons and in simple amines it is trivalent , with the two remaining electrons forming a lone pair .
The advantages of this approach are that (i) thiosulfate is far less toxic than cyanide and (ii) that ore types that are refractory to gold cyanidation (e.g. carbonaceous or Carlin-type ores) can be leached by thiosulfate. One problem with this alternative process is the high consumption of thiosulfate, which is more expensive than cyanide.