Search results
Results from the WOW.Com Content Network
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner.
Elastic potential energy is the potential energy of an elastic object (for example a bow or a catapult) that is deformed under tension or compression (or stressed in formal terminology). It arises as a consequence of a force that tries to restore the object to its original shape, which is most often the electromagnetic force between the atoms ...
Chemical energy is the kind of potential energy "stored" in chemical bonds and is studied in chemistry. [24] Nuclear energy is energy stored in interactions between the particles in the atomic nucleus and is studied in nuclear physics. [25] Electromagnetic energy is in the form of electric charges, magnetic fields, and photons.
The potential energy within a spring is determined by the equation =. When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the spring. By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic ...
move to sidebar hide. From Wikipedia, the free encyclopedia
This formulation takes the energy potential (W) as a function of the deformation gradient (). By also requiring satisfaction of material objectivity , the energy potential may be alternatively regarded as a function of the Cauchy-Green deformation tensor ( C := F T F {\displaystyle {\boldsymbol {C}}:={\boldsymbol {F}}^{\textsf {T}}{\boldsymbol ...
Image credits: The inner detail #5 Solar Panels. While both solar panels and plant leaves harvest energy from the sun, a team at Princeton University took biomimicry in solar panels a step further ...
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.