Ads
related to: rotation of figures geometry definition anatomy examples diagram free templateeducation.com has been visited by 100K+ users in the past month
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Interactive Stories
Search results
Results from the WOW.Com Content Network
Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.
A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :
One example is shown in the diagram, where the rotation takes place about the z-axis. The plane of rotation is the xy -plane, so everything in that plane it kept in the plane by the rotation. This could be described by a matrix like the following, with the rotation being through an angle θ (about the axis or in the plane):
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).
A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = ( ), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.
Ads
related to: rotation of figures geometry definition anatomy examples diagram free templateeducation.com has been visited by 100K+ users in the past month