enow.com Web Search

  1. Ads

    related to: rotation of figures geometry definition anatomy examples diagram free template
  2. education.com has been visited by 100K+ users in the past month

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.

  3. Rotation - Wikipedia

    en.wikipedia.org/wiki/Rotation

    A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.

  4. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2). The following table gives examples of rotation and reflection matrix :

  6. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    One example is shown in the diagram, where the rotation takes place about the z-axis. The plane of rotation is the xy -plane, so everything in that plane it kept in the plane by the rotation. This could be described by a matrix like the following, with the rotation being through an angle θ (about the axis or in the plane):

  7. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Every rotation in three dimensions is defined by its axis (a vector along this axis is unchanged by the rotation), and its angle — the amount of rotation about that axis (Euler rotation theorem). There are several methods to compute the axis and angle from a rotation matrix (see also axis–angle representation ).

  9. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = (⁡ ⁡ ⁡ ⁡), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.

  1. Ads

    related to: rotation of figures geometry definition anatomy examples diagram free template