Search results
Results from the WOW.Com Content Network
A complex number is an expression of the form a + bi, where a and b are real numbers, and i is an abstract symbol, the so-called imaginary unit, whose meaning will be explained further below. For example, 2 + 3i is a complex number. [3]
In other words, matrix multiplication is not commutative, in marked contrast to (rational, real, or complex) numbers, whose product is independent of the order of the factors. [10] An example of two matrices not commuting with each other is:
A complex number is equal to its complex conjugate if its imaginary part is zero, that is, if the number is real. In other words, real numbers are the only fixed points of conjugation. Conjugation does not change the modulus of a complex number: | ¯ | = | |. Conjugation is an involution, that is, the conjugate of the conjugate of a complex ...
Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.
which can be used to represent the imaginary unit and hence all complex numbers using 2×2 real matrices, see matrix representation of complex numbers. Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root with complex-valued entries. Some matrices have no square root.
In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]
If the exponent is a power of two then the expression cannot, in general, be factorized without introducing complex numbers (if E and F contain complex numbers, this may be not the case). If n has an odd divisor, that is if n = pq with p odd, one may use the preceding formula (in "Sum, odd exponent") applied to ( E q ) p + ( F q ) p ...
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...