Search results
Results from the WOW.Com Content Network
Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.
An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.
A cube number, or a perfect cube, or sometimes just a cube, is a number which is the cube of an integer. The non-negative perfect cubes up to 60 3 are (sequence A000578 in the OEIS ): 0 3 =
The principal cube root is the cube root with the largest real part. In the case of negative real numbers, the largest real part is shared by the two nonreal cube roots, and the principal cube root is the one with positive imaginary part. So, for negative real numbers, the real cube root is not the principal cube root. For positive real numbers ...
The four 4th roots of −1, none of which are real The three 3rd roots of −1, one of which is a negative real. An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x:
Also, the use of principal cube root may give a wrong result if the coefficients are non-real complex numbers. Moreover, if the coefficients belong to another field, the principal cube root is not defined in general. The second way for making Cardano's formula always correct, is to remark that the product of the two cube roots must be –p / 3.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.