enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Random number generators that use external entropy [ edit ] These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.).

  3. Marsaglia polar method - Wikipedia

    en.wikipedia.org/wiki/Marsaglia_polar_method

    The Marsaglia polar method [1] is a pseudo-random number sampling method for generating a pair of independent standard normal random variables. [2]Standard normal random variables are frequently used in computer science, computational statistics, and in particular, in applications of the Monte Carlo method.

  4. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  5. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated.

  6. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    For Monte Carlo simulations, an LCG must use a modulus greater and preferably much greater than the cube of the number of random samples which are required. This means, for example, that a (good) 32-bit LCG can be used to obtain about a thousand random numbers; a 64-bit LCG is good for about 2 21 random samples (a little over two million), etc ...

  7. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...

  8. Random seed - Wikipedia

    en.wikipedia.org/wiki/Random_seed

    A random seed (or seed state, or just seed) is a number (or vector) used to initialize a pseudorandom number generator. A pseudorandom number generator's number sequence is completely determined by the seed: thus, if a pseudorandom number generator is later reinitialized with the same seed, it will produce the same sequence of numbers.

  9. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    In the 1949 talk, Von Neumann quipped that "Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin." What he meant, he elaborated, was that there were no true "random numbers", just means to produce them, and "a strict arithmetic procedure", like the middle-square method, "is not such a method".