enow.com Web Search

  1. Ad

    related to: properties of a triangle vertices

Search results

  1. Results from the WOW.Com Content Network
  2. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...

  3. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    A set of points lying on the same circle are called concyclic, and a polygon whose vertices are concyclic is called a cyclic polygon. Every triangle is concyclic, but polygons with more than three sides are not in general. Cyclic polygons, especially four-sided cyclic quadrilaterals, have various special properties.

  4. Triangular prism - Wikipedia

    en.wikipedia.org/wiki/Triangular_prism

    A triangular prism has 6 vertices, 9 edges, and 5 faces. Every prism has 2 congruent faces known as its bases, and the bases of a triangular prism are triangles. The triangle has 3 vertices, each of which pairs with another triangle's vertex, making up another 3 edges. These edges form 3 parallelograms as other faces. [2]

  5. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    The Nagel triangle or extouch triangle of is denoted by the vertices , , and that are the three points where the excircles touch the reference and where is opposite of , etc. This T A T B T C {\displaystyle \triangle T_{A}T_{B}T_{C}} is also known as the extouch triangle of A B C {\displaystyle \triangle ABC} .

  6. Ideal triangle - Wikipedia

    en.wikipedia.org/wiki/Ideal_triangle

    The interior angles of an ideal triangle are all zero. An ideal triangle has infinite perimeter. An ideal triangle is the largest possible triangle in hyperbolic geometry. In the standard hyperbolic plane (a surface where the constant Gaussian curvature is −1) we also have the following properties: Any ideal triangle has area π. [1]

  7. Fermat point - Wikipedia

    en.wikipedia.org/wiki/Fermat_point

    Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...

  8. Modern triangle geometry - Wikipedia

    en.wikipedia.org/wiki/Modern_triangle_geometry

    In mathematics, modern triangle geometry, or new triangle geometry, is the body of knowledge relating to the properties of a triangle discovered and developed roughly since the beginning of the last quarter of the nineteenth century. Triangles and their properties were the subject of investigation since at least the time of Euclid.

  9. Ideal point - Wikipedia

    en.wikipedia.org/wiki/Ideal_point

    if all vertices of a triangle are ideal points the triangle is an ideal triangle. Some properties of ideal triangles include: All ideal triangles are congruent. The interior angles of an ideal triangle are all zero. Any ideal triangle has an infinite perimeter. Any ideal triangle has area / where K is the (always negative) curvature of the ...

  1. Ad

    related to: properties of a triangle vertices