Search results
Results from the WOW.Com Content Network
The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the ...
An example chemical cycle, a schematic representation of a Nitrogen cycle on Earth. This process results in the continual recycling of nitrogen gas involving the ocean. Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space ...
In two long and ambitious theoretical papers in 1900 and 1901, Lewis tried to provide a solution. Lewis introduced the thermodynamic concept of activity and coined the term " fugacity ". [ 35 ] [ 36 ] [ 37 ] His new idea of fugacity, or "escaping tendency", [ 38 ] was a function with the dimensions of pressure which expressed the tendency of a ...
The nitrogen cycle is one of the Earth's biogeochemical cycles. It involves the conversion of nitrogen into different chemical forms. The main processes of the nitrogen cycle are the fixation, ammonification, nitrification, and denitrification. As one of the macronutrients, nitrogen plays an important role in plant growth.
Metal nitrito complexes figure prominently in the nitrogen cycle, which describes the relationships and interconversions of ammonia up to nitrate. Because nitrogen is often a limiting nutrient, this cycle is important. Nitrite itself does not readily undergo redox reactions, but its metal complexes do. [13]
Nitrogen is the least electronegative atom of the two, so it is the central atom by multiple criteria. Count valence electrons. Nitrogen has 5 valence electrons; each oxygen has 6, for a total of (6 × 2) + 5 = 17. The ion has a charge of −1, which indicates an extra electron, so the total number of electrons is 18. Connect the atoms by ...
Approximately 78% of Earth's atmosphere is N gas (N 2), which is an inert compound and biologically unavailable to most organisms.In order to be utilized in most biological processes, N 2 must be converted to reactive nitrogen (Nr), which includes inorganic reduced forms (NH 3 and NH 4 +), inorganic oxidized forms (NO, NO 2, HNO 3, N 2 O, and NO 3 −), and organic compounds (urea, amines, and ...
Nitrogen cycle. Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria. The transformation of ammonia to ...