Search results
Results from the WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The problem to determine all positive integers such that the concatenation of and in base uses at most distinct characters for and fixed [citation needed] and many other problems in the coding theory are also the unsolved problems in mathematics.
Rule 110 - most questions involving "can property X appear later" are undecidable. The problem of determining whether a quantum mechanical system has a spectral gap. [8] [9] Finding the capacity of an information-stable finite state machine channel. [10] In network coding, determining whether a network is solvable. [11] [12]
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...
Conceptual questions or conceptual problems in science, technology, engineering, and mathematics (STEM) education are questions that can be answered based only on the knowledge of relevant concepts, rather than performing extensive calculations. They contrast with most homework and exam problems in science and engineering that typically require ...
An example of a problem where this method has been used is the clique problem: given a CNF formula consisting of c clauses, the corresponding graph consists of a vertex for each literal, and an edge between each two non-contradicting [c] literals from different clauses; see the picture.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...