enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intrinsic semiconductor - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_semiconductor

    The conduction of current of intrinsic semiconductor is enabled purely by electron excitation across the band-gap, which is usually small at room temperature except for narrow-bandgap semiconductors, like Hg 0.8 Cd 0.2 Te. The conductivity of a semiconductor can be modeled in terms of the band theory of solids.

  3. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    The mass action law defines a quantity called the intrinsic carrier concentration, which for undoped materials: n i = n 0 = p 0 {\displaystyle n_{i}=n_{0}=p_{0}} The following table lists a few values of the intrinsic carrier concentration for intrinsic semiconductors , in order of increasing band gap.

  4. Mass action law (electronics) - Wikipedia

    en.wikipedia.org/wiki/Mass_action_law_(electronics)

    In electronics and semiconductor physics, the law of mass action relates the concentrations of free electrons and electron holes under thermal equilibrium.It states that, under thermal equilibrium, the product of the free electron concentration and the free hole concentration is equal to a constant square of intrinsic carrier concentration .

  5. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    In an intrinsic or lightly doped semiconductor, μ is close enough to a band edge that there are a dilute number of thermally excited carriers residing near that band edge. In semiconductors and semimetals the position of μ relative to the band structure can usually be controlled to a significant degree by doping or gating.

  6. Doping (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Doping_(semiconductor)

    Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.

  7. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    In solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices , such as photodiodes , light ...

  8. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material, v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and; μ e is the electron mobility.

  9. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    As carriers are generated (green:electrons and purple:holes) due to light shining at the center of an intrinsic semiconductor, they diffuse towards two ends. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes. The equation above can be applied to model semiconductor devices.