Search results
Results from the WOW.Com Content Network
Some trajectories of a particle in a box according to Newton's laws of classical mechanics (A), and according to the Schrödinger equation of quantum mechanics (B–F). In (B–F), the horizontal axis is position, and the vertical axis is the real part (blue) and imaginary part (red) of the wave function.
Taking the "box" to be a black body cavity, the photons are continually being absorbed and re-emitted by the walls. When this is the case, the number of photons is not conserved. In the derivation of Bose–Einstein statistics , when the restraint on the number of particles is removed, this is effectively the same as setting the chemical ...
The Hamiltonians to which we know exact solutions, such as the hydrogen atom, the quantum harmonic oscillator and the particle in a box, are too idealized to adequately describe most systems. Using perturbation theory, we can use the known solutions of these simple Hamiltonians to generate solutions for a range of more complicated systems.
The presence of degenerate energy levels is studied in the cases of Particle in a box and two-dimensional harmonic oscillator, which act as useful mathematical models for several real world systems. Particle in a rectangular plane
The major part of the theory is the behaviour of the exciton resembles that of an atom as its surrounding space shortens. A rather good approximation of an exciton's behaviour is the 3-D model of a particle in a box. [4]
In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries gravitational force. [48] [49] Another popular theory is loop quantum gravity (LQG), which describes quantum properties of gravity and is thus a theory of quantum spacetime. LQG is an attempt to merge and ...
Unlike the infinite potential well, there is a probability associated with the particle being found outside the box. The quantum mechanical interpretation is unlike the classical interpretation, where if the total energy of the particle is less than the potential energy barrier of the walls it cannot be found outside the box.
Let n denote a complete set of (discrete) quantum numbers for specifying single-particle states (for example, for the particle in a box problem, take n to be the quantized wave vector of the wavefunction.) For simplicity, consider a system composed of two particles that are not interacting with each other.