enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mellin transform - Wikipedia

    en.wikipedia.org/wiki/Mellin_transform

    In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform.This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier ...

  3. Laplace–Stieltjes transform - Wikipedia

    en.wikipedia.org/wiki/Laplace–Stieltjes_transform

    The Laplace–Stieltjes transform of a real-valued function g is given by a Lebesgue–Stieltjes integral of the form ()for s a complex number.As with the usual Laplace transform, one gets a slightly different transform depending on the domain of integration, and for the integral to be defined, one also needs to require that g be of bounded variation on the region of integration.

  4. Stieltjes transformation - Wikipedia

    en.wikipedia.org/wiki/Stieltjes_transformation

    In mathematics, the Stieltjes transformation S ρ (z) of a measure of density ρ on a real interval I is the function of the complex variable z defined outside I by the formula S ρ ( z ) = ∫ I ρ ( t ) d t t − z , z ∈ C ∖ I . {\displaystyle S_{\rho }(z)=\int _{I}{\frac {\rho (t)\,dt}{t-z}},\qquad z\in \mathbb {C} \setminus I.}

  5. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    The free-space circular cylindrical Green's function (see below) is given in terms of the reciprocal distance between two points. The expression is derived in Jackson's Classical Electrodynamics. [1] Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in

  6. Distribution of the product of two random variables - Wikipedia

    en.wikipedia.org/wiki/Distribution_of_the...

    The distribution of the product of correlated non-central normal samples was derived by Cui et al. [11] and takes the form of an infinite series of modified Bessel functions of the first kind. Moments of product of correlated central normal samples. For a central normal distribution N(0,1) the moments are

  7. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  8. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1). The Dirac delta function , although not strictly a probability distribution, is a limiting form of many continuous probability functions.

  9. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Non-logarithmized series that are growing exponentially often appear to have increasing variability as the series rises over time. The variability in percentage terms may, however, be rather stable. Use a different specification for the model (different X variables, or perhaps non-linear transformations of the X variables).