Search results
Results from the WOW.Com Content Network
Conversely, if this "distributive property" holds for all non-negative real numbers, and , then the set is convex. [6] An example of a non-convex set such that +. The figure to the right shows an example of a non-convex set for which +.
A non-associative algebra [1] (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative.That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative.
In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...
Mental calculation consists of arithmetical calculations using only the human brain, with no help from any supplies (such as pencil and paper) or devices such as a calculator. People may use mental calculation when computing tools are not available, when it is faster than other means of calculation (such as conventional educational institution ...
Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, [1] [2] or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects. Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to ...
In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .
The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...
To see that the expanded product equals the sum on the first line, apply the distributive law to the product. This expands the product into a sum of monomials of the form x a 1 x 2 a 2 x 3 a 3 ⋯ {\displaystyle x^{a_{1}}x^{2a_{2}}x^{3a_{3}}\cdots } for some sequence of coefficients a i {\displaystyle a_{i}} , only finitely many of which can be ...