enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. QUICK scheme - Wikipedia

    en.wikipedia.org/wiki/Quick_scheme

    This scheme is used to solve convection–diffusion equations using second order central difference for the diffusion term and for the convection term the scheme is third order accurate in space and first order accurate in time. QUICK is most appropriate for steady flow or quasi-steady highly convective elliptic flow. [3]

  3. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convection–diffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  4. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  5. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    The convection–diffusion equation describes the flow of heat, particles, or other physical quantities in situations where there is both diffusion and convection or advection. For information about the equation, its derivation, and its conceptual importance and consequences, see the main article convection–diffusion equation. This article ...

  6. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    The right side of the convection-diffusion equation, which basically highlights the diffusion terms, can be represented using central difference approximation. To simplify the solution and analysis, linear interpolation can be used logically to compute the cell face values for the left side of this equation, which is nothing but the convective ...

  7. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    A nonlinear hyperbolic conservation law is defined through a flux function : + (()) = In the case of f ( u ) = a u {\displaystyle f(u)=au} , we end up with a scalar linear problem. Note that in general, u {\displaystyle u} is a vector with m {\displaystyle m} equations in it.

  8. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    The order of differencing can be reversed for the time step (i.e., forward/backward followed by backward/forward). For nonlinear equations, this procedure provides the best results. For linear equations, the MacCormack scheme is equivalent to the Lax–Wendroff method .

  9. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]