Search results
Results from the WOW.Com Content Network
The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. [1] A free radical is any atom or molecule that has a single unpaired electron in an outer shell. [2] While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly ...
Oxidative stress mechanisms in tissue injury. Free radical toxicity induced by xenobiotics and the subsequent detoxification by cellular enzymes (termination).. Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. [1]
The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 [1] and was developed in the works of Linnane and coworkers (1989). [2] The second was proposed by A. N. Lobachev in 1978. [3]
Free radical toxicity induced by xenobiotics and the subsequent detoxification by cellular enzymes (termination). Effects of ROS on cell metabolism are well documented in a variety of species. [ 19 ] These include not only roles in apoptosis (programmed cell death) but also positive effects such as the induction of host defence [ 36 ] [ 37 ...
In alternative fashion, nitrite anions on sun-exposed skin may be photolyzed to free nitric oxide radicals by UVA in sunlight. [19] This mechanism may elicit significant changes to the systemic blood circulation in humans and be exploited for therapeutic purposes. [20] Nasal breathing also produces nitric oxide within the body. [21] [22] [23] [24]
Free radical mechanisms in tissue injury. Lipid peroxidation induced by xenobiotics and the subsequent detoxification by cellular enzymes (termination). Antioxidants play a crucial role in mitigating lipid peroxidation by neutralizing free radicals, thereby halting radical chain reactions. Key antioxidants include vitamin C and vitamin E. [8]
Although oxidative phosphorylation is a vital part of metabolism, it produces reactive oxygen species such as superoxide and hydrogen peroxide, which lead to propagation of free radicals, damaging cells and contributing to disease and, possibly, aging and senescence.
Pages in category "Free radicals" The following 82 pages are in this category, out of 82 total. This list may not reflect recent changes. ...