Search results
Results from the WOW.Com Content Network
where G is the universal constant of gravitation (commonly taken as G = 6.674 × 10 −11 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...
G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 [4]) g = GM / d 2 is the local gravitational acceleration (or the surface gravity , when d = r ). The value GM is called the standard gravitational parameter , or μ , and is often known more accurately than either G or M separately.
Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.
11.1 s: 65 km/h (40 mph) Mars: 0.3895 3.728 12.23 7.3 s: 98 km/h (61 mph) Ceres: 0.029 0.28 0.92 26.7 s: 27 km/h (17 mph) Jupiter: 2.640 25.93 85.1 2.8 s: 259 km/h (161 mph) Io: 0.182 1.789 5.87 10.6 s: 68 km/h (42 mph) Europa: 0.134 1.314 4.31 12.3 s: 58 km/h (36 mph) Ganymede: 0.145 1.426 4.68 11.8 s: 61 km/h (38 mph) Callisto: 0.126 1.24 4.1 ...
The resulting mean surface pressure is only 0.6% of Earth's 101.3 kPa (14.69 psi). The scale height of the atmosphere is about 10.8 kilometres (6.7 mi), [118] which is higher than Earth's 6 kilometres (3.7 mi), because the surface gravity of Mars is only about 38% of Earth's. [119]
For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.
It equals (3.986 004 418 ± 0.000 000 008) × 10 14 m 3 ⋅s −2. [ 4 ] The value of this constant became important with the beginning of spaceflight in the 1950s, and great effort was expended to determine it as accurately as possible during the 1960s.
For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.