enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Mars - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Mars

    where G is the universal constant of gravitation (commonly taken as G = 6.674 × 1011 m 3 kg −1 s −2), [10] M is the mass of Mars (most updated value: 6.41693 × 10 23 kg), [11] m is the mass of the satellite, r is the distance between Mars and the satellite, and is the angular velocity of the satellite, which is also equivalent to (T ...

  3. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    G is the universal gravitational constant (G ≈ 6.67 × 1011 m 3 ⋅kg −1 ⋅s −2 ‍ [4]) g = GM / d 2 is the local gravitational acceleration (or the surface gravity , when d = r ). The value GM is called the standard gravitational parameter , or μ , and is often known more accurately than either G or M separately.

  4. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    Vesta (radius 262.7 ± 0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today. [74] Pallas (radius 255.5 ± 2 km ), the third-largest asteroid, appears never to have completed differentiation and likewise has an irregular shape.

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    11.1 s: 65 km/h (40 mph) Mars: 0.3895 3.728 12.23 7.3 s: 98 km/h (61 mph) Ceres: 0.029 0.28 0.92 26.7 s: 27 km/h (17 mph) Jupiter: 2.640 25.93 85.1 2.8 s: 259 km/h (161 mph) Io: 0.182 1.789 5.87 10.6 s: 68 km/h (42 mph) Europa: 0.134 1.314 4.31 12.3 s: 58 km/h (36 mph) Ganymede: 0.145 1.426 4.68 11.8 s: 61 km/h (38 mph) Callisto: 0.126 1.24 4.1 ...

  6. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    The resulting mean surface pressure is only 0.6% of Earth's 101.3 kPa (14.69 psi). The scale height of the atmosphere is about 10.8 kilometres (6.7 mi), [118] which is higher than Earth's 6 kilometres (3.7 mi), because the surface gravity of Mars is only about 38% of Earth's. [119]

  7. List of Solar System objects by size - Wikipedia

    en.wikipedia.org/wiki/List_of_Solar_System...

    For example, if a TNO is incorrectly assumed to have a mass of 3.59 × 10 20 kg based on a radius of 350 km with a density of 2 g/cm 3 but is later discovered to have a radius of only 175 km with a density of 0.5 g/cm 3, its true mass would be only 1.12 × 10 19 kg.

  8. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    It equals (3.986 004 418 ± 0.000 000 008) × 10 14 m 3 ⋅s −2. [ 4 ] The value of this constant became important with the beginning of spaceflight in the 1950s, and great effort was expended to determine it as accurately as possible during the 1960s.

  9. Mean radius (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Mean_radius_(astronomy)

    For planet Earth, which can be approximated as an oblate spheroid with radii 6 378.1 km and 6 356.8 km, the mean radius is = (( ) ) / = . The equatorial and polar radii of a planet are often denoted r e {\displaystyle r_{e}} and r p {\displaystyle r_{p}} , respectively.