enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  3. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  4. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [ 1 ] : 3 It has applications in a wide range of disciplines, including mechanical , aerospace , civil , chemical , and biomedical engineering , as well as geophysics , oceanography , meteorology , astrophysics ...

  5. Open-channel flow - Wikipedia

    en.wikipedia.org/wiki/Open-channel_flow

    The general continuity equation, describing the conservation of mass, takes the form: + = where is the fluid density and () is the divergence operator. Under the assumption of incompressible flow, with a constant control volume V {\displaystyle V} , this equation has the simple expression ∇ ⋅ v = 0 {\displaystyle \nabla \cdot {\bf {v}}=0} .

  6. Numerical methods in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Numerical_Methods_in_Fluid...

    This is an example of an implicit method since the unknown u(n + 1) has been used in evaluating the slope of the solution on the right hand side; this is not a problem to solve for u(n + 1) in this scalar and linear case. For more complicated situations like a nonlinear right hand side or a system of equations, a nonlinear system of equations ...

  7. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different. The fluid can even exhibit time-dependent viscosity. Therefore ...

  8. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move (or "to jump") between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations.

  9. Material derivative - Wikipedia

    en.wikipedia.org/wiki/Material_derivative

    For example, for a macroscopic scalar field φ(x, t) and a macroscopic vector field A(x, t) the definition becomes: +, +. In the scalar case ∇ φ is simply the gradient of a scalar, while ∇ A is the covariant derivative of the macroscopic vector (which can also be thought of as the Jacobian matrix of A as a function of x ).