Search results
Results from the WOW.Com Content Network
In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning, there is an integer parameter k, and the goal is to decide whether S can be partitioned into k subsets of equal sum (the ...
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]
The number of representations of a natural number n as the sum of four squares of integers is denoted by r 4 (n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.
One example is the constrained shortest path problem, [16] which attempts to minimize the total cost of the path while at the same time maintaining another metric below a given threshold. This makes the problem NP-complete (such problems are not believed to be efficiently solvable for large sets of data, see P = NP problem ).
The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]
The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.
For example, in the graph P 3, a path with three vertices a, b, and c, and two edges ab and bc, the sets {b} and {a, c} are both maximally independent. The set { a } is independent, but is not maximal independent, because it is a subset of the larger independent set { a , c }.