enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthonormal basis - Wikipedia

    en.wikipedia.org/wiki/Orthonormal_basis

    Given a pre-Hilbert space , an orthonormal basis for is an orthonormal set of vectors with the property that every vector in can be written as an infinite linear combination of the vectors in the basis. In this case, the orthonormal basis is sometimes called a Hilbert basis for . Note that an orthonormal basis in this sense is not generally a ...

  3. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    The geometric content of the SVD theorem can thus be summarized as follows: for every linear map ⁠: ⁠ one can find orthonormal bases of ⁠ ⁠ and ⁠ ⁠ such that ⁠ ⁠ maps the ⁠ ⁠-th basis vector of ⁠ ⁠ to a non-negative multiple of the ⁠ ⁠-th basis vector of ⁠, ⁠ and sends the leftover basis vectors to zero.

  4. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q T Q = Q Q T = I , {\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} where Q T is the transpose of Q and I is the identity matrix .

  5. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  6. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose † =). If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A.

  7. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    where {:} is an orthonormal basis. [1] [2] The index set need not be countable. However, the sum on the right must contain at most countably many non-zero terms, to have meaning. [3] This definition is independent of the choice of the orthonormal basis.

  8. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    For a normal matrix A (and only for a normal matrix), the eigenvectors can also be made orthonormal (=) and the eigendecomposition reads as =. In particular all unitary , Hermitian , or skew-Hermitian (in the real-valued case, all orthogonal , symmetric , or skew-symmetric , respectively) matrices are normal and therefore possess this property.