Search results
Results from the WOW.Com Content Network
Below optical frequencies (that is, at microwave and radio frequencies), the spectrum analyzer is a closely related electronic device. Spectrometers are used in many fields. For example, they are used in astronomy to analyze the radiation from objects and deduce their chemical composition.
An object that cannot be superimposed on its mirror image is said to be chiral, and optical rotatory dispersion and circular dichroism are known as chiroptical properties. Most biological molecules have one or more chiral centers and undergo enzyme-catalyzed transformations that either maintain or invert the chirality at one or more of these ...
The optical properties of a material define how it interacts with light. The optical properties of matter are studied in optical physics (a subfield of optics) and applied in materials science. The optical properties of matter include: Refractive index; Dispersion; Transmittance and Transmission coefficient; Absorption; Scattering; Turbidity
The observed rotation of the sample is the weighted sum of the optical rotation of each anomer weighted by the amount of that anomer present. Therefore, one can use a polarimeter to measure the rotation of a sample and then calculate the ratio of the two anomers present from the enantiomeric excess, as long as one knows the rotation of each pure anomer.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
Benzene is a centrosymmetric molecule having a centre of symmetry at the centre. In crystallography, a centrosymmetric point group contains an inversion center as one of its symmetry elements. [1] In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z).
The free spectral range of a diffraction grating is the largest wavelength range for a given order that does not overlap the same range in an adjacent order. If the ( m + 1)-th order of λ {\displaystyle \lambda } and m -th order of ( λ + Δ λ ) {\displaystyle (\lambda +\Delta \lambda )} lie at the same angle, then
Schlieren (/ ˈ ʃ l ɪər ən / SHLEER-ən; German: [ˈʃliːʁn̩] ⓘ, German for 'streaks') are optical inhomogeneities in transparent media that are not necessarily visible to the human eye. Schlieren physics developed out of the need to produce high-quality lenses devoid of such inhomogeneities.