enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Two bits of entropy: In the case of two fair coin tosses, the information entropy in bits is the base-2 logarithm of the number of possible outcomes ‍ — with two coins there are four possible outcomes, and two bits of entropy. Generally, information entropy is the average amount of information conveyed by an event, when considering all ...

  3. Binary entropy function - Wikipedia

    en.wikipedia.org/wiki/Binary_entropy_function

    Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function.. In information theory, the binary entropy function, denoted ⁡ or ⁡ (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula:

  4. Orders of magnitude (entropy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(entropy)

    Entropy equivalent of one bit of information, equal to k times ln(2) [1] 10 −23: 1.381 × 10 −23 J⋅K −1: Boltzmann constant, entropy equivalent of one nat of information. 10 1: 5.74 J⋅K −1: Standard entropy of 1 mole of graphite [2] 10 33: ≈ 10 35 J⋅K −1: Entropy of the Sun (given as ≈ 10 42 erg⋅K −1 in Bekenstein (1973 ...

  5. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  6. Full entropy - Wikipedia

    en.wikipedia.org/wiki/Full_entropy

    The ideal elements by nature have an entropy value of n. The inputs of the conditioning function will need to have a higher min-entropy value H to satisfy the full-entropy definition. The number of additional bits of entropy depends on W and δ; the following table contains few representative values: [4]

  7. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    Assume that the combined system determined by two random variables and has joint entropy (,), that is, we need (,) bits of information on average to describe its exact state. Now if we first learn the value of X {\displaystyle X} , we have gained H ( X ) {\displaystyle \mathrm {H} (X)} bits of information.

  8. Landauer's principle - Wikipedia

    en.wikipedia.org/wiki/Landauer's_principle

    Landauer's principle is a physical principle pertaining to a lower theoretical limit of energy consumption of computation.It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings. [1]

  9. Quantities of information - Wikipedia

    en.wikipedia.org/wiki/Quantities_of_information

    Although, in both cases, mutual information expresses the number of bits of information common to the two sources in question, the analogy does not imply identical properties; for example, differential entropy may be negative. The differential analogies of entropy, joint entropy, conditional entropy, and mutual information are defined as follows: