Search results
Results from the WOW.Com Content Network
Ideogram was founded in 2022 by Mohammad Norouzi, William Chan, Chitwan Saharia, and Jonathan Ho to develop a better text-to-image model. [3]It was first released with its 0.1 model on August 22, 2023, [4] after receiving $16.5 million in seed funding, which itself was led by Andreessen Horowitz and Index Ventures.
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
The dataset contains 500,000 text-queries, with up to 20,000 (image, text) pairs per query. The text-queries were generated by starting with all words occurring at least 100 times in English Wikipedia, then extended by bigrams with high mutual information, names of all Wikipedia articles above a certain search volume, and WordNet synsets.
images, text Image captioning 2016 [12] R. Krishna et al. Berkeley 3-D Object Dataset 849 images taken in 75 different scenes. About 50 different object classes are labeled. Object bounding boxes and labeling. 849 labeled images, text Object recognition 2014 [13] [14] A. Janoch et al. Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500)
(AlexNet image size should be 227×227×3, instead of 224×224×3, so the math will come out right. The original paper said different numbers, but Andrej Karpathy, the former head of computer vision at Tesla, said it should be 227×227×3 (he said Alex didn't describe why he put 224×224×3).
AI-driven image generation tools have been heavily criticized by artists because they are trained on human-made art scraped from the web." [7] The second is the trouble with copyright law and data text-to-image models are trained on. OpenAI has not released information about what dataset(s) were used to train DALL-E 2, inciting concern from ...
Text-to-Image personalization is a task in deep learning for computer graphics that augments pre-trained text-to-image generative models. In this task, a generative model that was trained on large-scale data (usually a foundation model ), is adapted such that it can generate images of novel, user-provided concepts.
For AI art generation, which generates images from text prompts, NovelAI uses a custom version of the source-available Stable Diffusion [2] [14] text-to-image diffusion model called NovelAI Diffusion, which is trained on a Danbooru-based [5] [1] [15] [16] dataset. NovelAI is also capable of generating a new image based on an existing image. [17]