enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  3. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. In mathematics and solid state physics , the first Brillouin zone (named after Léon Brillouin ) is a uniquely defined primitive cell in reciprocal space .

  4. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.

  5. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)

  6. Bloch's theorem - Wikipedia

    en.wikipedia.org/wiki/Bloch's_theorem

    Another helpful ingredient in the proof is the reciprocal lattice vectors. These are three vectors b 1, b 2, b 3 (with units of inverse length), with the property that a i · b i = 2π, but a i · b j = 0 when i ≠ j. (For the formula for b i, see reciprocal lattice vector.)

  7. Multidimensional sampling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_sampling

    Let denote a lattice in and the corresponding reciprocal lattice. The theorem of Petersen and Middleton [1] states that a function () that is wavenumber-limited to a set can be exactly reconstructed from its measurements on provided that the set does not overlap with any of its shifted versions + where the shift x is any nonzero element of the reciprocal lattice .

  8. Plane wave expansion method - Wikipedia

    en.wikipedia.org/wiki/Plane_wave_expansion_method

    with the Fourier series coefficients being the K numbers subscripted by m, n respectively, and the reciprocal lattice vector given by . In real modeling, the range of components considered will be reduced to just ± N max {\displaystyle \pm N_{\max }} instead of the ideal, infinite wave.

  9. Translation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Translation_operator...

    For each Bravais lattice vector we define a translation operator ^ which, when operating on any function () shifts the argument by : ^ = (+) Since all translations form an Abelian group, the result of applying two successive translations does not depend on the order in which they are applied, i.e. ^ ^ = ^ ^ = ^ + In addition, as the Hamiltonian ...