Search results
Results from the WOW.Com Content Network
The 80-bit floating-point format was widely available by 1984, [25] after the development of C, Fortran and similar computer languages, which initially offered only the common 32- and 64-bit floating-point sizes. On the x86 design most C compilers now support 80-bit extended precision via the long double type, and this was specified in the C99 ...
Using a data size of 16 bits will cause only the bottom 16 bits of the 32-bit general-purpose registers to be modified – the top 16 bits are left unchanged.) The default OperandSize and AddressSize to use for each instruction is given by the D bit of the segment descriptor of the current code segment - D=0 makes both 16-bit, D=1 makes both 32 ...
The former loads a 80-bit BCD integer into the FPU, while the latter writes a FPU value as a 80-bit integer value into the memory. Inside of the FPU, the values are stored as normal x87 extended-precision floats. Unlike the integer-facing versions, the two instructions remain available in long mode. [1] The 80-bit format is divided into the ...
On x86_64, the BSDs default to 80-bit extended precision. Microsoft Windows with Visual C++ also sets the processor in double-precision mode by default, but this can again be overridden within an individual program (e.g. by the _controlfp_s function in Visual C++ [24]).
Microsoft Windows, for example, designates its 32-bit versions as "x86" and 64-bit versions as "x64", while installation files of 64-bit Windows versions are required to be placed into a directory called "AMD64". [20] In 2023, Intel proposed a major change to the architecture referred to as X86S (formerly known as X86-S). The S in X86S stood ...
On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc [13] and the Intel C++ Compiler with a /Qlong‑double switch [14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++ [15]), rather than as quadruple
The 8086 [3] (also called iAPX 86) [4] is a 16-bit microprocessor chip designed by Intel between early 1976 [citation needed] and June 8, 1978, when it was released. [5] The Intel 8088, released July 1, 1979, [6] is a slightly modified chip with an external 8-bit data bus (allowing the use of cheaper and fewer supporting ICs), [note 1] and is notable as the processor used in the original IBM ...
This method was commonly used on Windows 3.x applications to produce a flat memory space, although as the OS itself was still 16-bit, API calls could not be made with 32-bit instructions. Thus, it was still necessary to place all code that performs API calls in 64k segments.