Search results
Results from the WOW.Com Content Network
Dose area product (DAP) is a quantity used in assessing the radiation risk from diagnostic X-ray radiography examinations and interventional procedures, like angiography.It is defined as the absorbed dose multiplied by the area irradiated, expressed in gray-centimetres squared (Gy·cm 2 [1] – sometimes the prefixed units dGy·cm 2, mGy·cm 2 or cGy·cm 2 are also used). [2]
In diagnostic radiology, the F-factor is the conversion factor between exposure to ionizing radiation and the absorbed dose from that radiation. In other words, it converts between the amount of ionization in air ( roentgens or, in SI units , coulombs per kilogram of absorber material) and the absorbed dose in air ( rads or grays ).
The annual conversions to a Julian year are: 1 mrem/h = 8,766 mrem/yr 0.1141 mrem/h = 1,000 mrem/yr. The International Commission on Radiological Protection (ICRP) once adopted fixed conversion for occupational exposure, although these have not appeared in recent documents: [6] 8 h = 1 day 40 h = 1 week 50 week = 1 yr
The roentgen or röntgen (/ ˈ r ɛ n t ɡ ə n,-dʒ ə n, ˈ r ʌ n t-/; [2] symbol R) is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air (statcoulomb per kilogram).
The fundamental quantity is the absorbed dose (D), which is defined as the mean energy imparted [by ionising radiation] (dE) per unit mass (dm) of material (D = dE/dm) [8] The SI unit of absorbed dose is the gray (Gy) defined as one joule per kilogram. Absorbed dose, as a point measurement, is suitable for describing localised (i.e. partial ...
The factor 0.3048 m/ft is identical to the dimensionless 1, so multiplying by this conversion factor changes nothing. Then when adding two quantities of like dimension, but expressed in different units, the appropriate conversion factor, which is essentially the dimensionless 1, is used to convert the quantities to the same unit so that their ...
This approach, although a great step forward in standardisation, had the disadvantage of not being a direct measure of the absorption of radiation, and thereby the ionisation effect, in various types of matter including human tissue, and was a measurement only of the effect of the X-rays in a specific circumstance; the ionisation effect in dry air.
A dose of under 100 rad will typically produce no immediate symptoms other than blood changes. A dose of 100 to 200 rad delivered to the entire body in less than a day may cause acute radiation syndrome (ARS), but is usually not fatal. Doses of 200 to 1,000 rad delivered in a few hours will cause serious illness, with poor prognosis at the ...