Search results
Results from the WOW.Com Content Network
The pineal gland (also known as the pineal body [1] or epiphysis cerebri) is a small endocrine gland in the brain of most vertebrates. It produces melatonin , a serotonin -derived hormone , which modulates sleep patterns following the diurnal cycles . [ 2 ]
The endocrine glands belong to the body's control system. The hormones which they produce help to regulate the functions of cells and tissues throughout the body. Endocrine organs are activated to release their hormones by humoral, neural, or hormonal stimuli. Negative feedback is important in regulating hormone levels in the blood.
The pituitary gland (or hypophysis) is an endocrine gland about the size of a pea and weighing 0.5 grams (0.018 oz) in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain, and rests in a small, bony cavity (sella turcica) covered by a dural fold (diaphragma sellae).
Other organs, such as the kidneys, also have roles within the endocrine system by secreting certain hormones. The study of the endocrine system and its disorders is known as endocrinology. The thyroid secretes thyroxine, the pituitary secretes growth hormone, the pineal secretes melatonin, the testis secretes testosterone, and the ovaries ...
Schematic of the HPA axis (CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone) Hypothalamus, pituitary gland, and adrenal cortex The hypothalamic–pituitary–adrenal axis (HPA axis or HTPA axis) is a complex set of direct influences and feedback interactions among three components: the hypothalamus (a part of the brain located below the thalamus), the pituitary gland (a ...
An abundance of cilia and centrioles has also been found in these Type 2 cells of the pineal gland. [7] Unique to the Type 2 is the presence of vacuoles containing 2 layers of membrane. [7] As Type 1 cells contain serotonin, Type 2 cells contain melatonin and are thought to have similar characteristics as endocrine and neuronal cells. [8]
Heterocrine glands typically have a complex structure that enables them to produce and release different types of secretions. The two primary components of these glands are: Endocrine component: Heterocrine glands produce hormones, which are chemical messengers that travel through the bloodstream to target organs or tissues.
Changes in renin ultimately alter the output of this system, principally the hormones angiotensin II and aldosterone. Each hormone acts via multiple mechanisms, but both increase the kidney's absorption of sodium chloride, thereby expanding the extracellular fluid compartment and raising blood pressure. When renin levels are elevated, the ...