Search results
Results from the WOW.Com Content Network
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. [1] [2] [3] Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to ...
Quizlet's primary products include digital flash cards, matching games, practice electronic assessments, and live quizzes. In 2017, 1 in 2 high school students used Quizlet. [ 4 ] As of December 2021, Quizlet has over 500 million user-generated flashcard sets and more than 60 million active users.
As reformulated, it became the "paving conjecture" for Euclidean spaces, and then a question on random polynomials, in which latter form it was solved affirmatively. 2015: Jean Bourgain, Ciprian Demeter, and Larry Guth: Main conjecture in Vinogradov's mean-value theorem: analytic number theory: Bourgain–Demeter–Guth theorem, ⇐ decoupling ...
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is
For example, a Fourier series of sine and cosine functions, all continuous, may converge pointwise to a discontinuous function such as a step function. Carmichael's totient function conjecture was stated as a theorem by Robert Daniel Carmichael in 1907, but in 1922 he pointed out that his proof was incomplete. As of 2016 the problem is still open.
This statement, due to Tunnell's theorem (Tunnell 1983), is related to the fact that n is a congruent number if and only if the elliptic curve y 2 = x 3 − n 2 x has a rational point of infinite order (thus, under the Birch and Swinnerton-Dyer conjecture, its L-function has a zero at 1). The interest in this statement is that the condition is ...
Goldbach's weak conjecture, every odd number greater than 5 can be expressed as the sum of three primes, is a consequence of Goldbach's conjecture. Ivan Vinogradov proved it for large enough n (Vinogradov's theorem) in 1937, [1] and Harald Helfgott extended this to a full proof of Goldbach's weak conjecture in 2013. [2] [3] [4]
The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving the estimate for the Hardy–Littlewood maximal function.. The theorem also holds if balls are replaced, in the definition of the derivative, by families of sets with diameter tending to zero satisfying the Lebesgue's regularity condition, defined above as family of sets with bounded eccentricity.