Search results
Results from the WOW.Com Content Network
Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
The formula given for 'Z' here is: Z = [ (x-μ)/σ ] Where: x is the raw score (the sample mean being tested) μ is the mean of the population; σ is the standard deviation of the population; s is the standard deviation of the sample; But, isn't that incorrect? The actual formula is the following: Z = [ (x-μ) / [σ/SqareRoot(N, the sample-size) ]
The Z-factor defines a characteristic parameter of the capability of hit identification for each given assay. The following categorization of HTS assay quality by the value of the Z-Factor is a modification of Table 1 shown in Zhang et al. (1999); [2] note that the Z-factor cannot exceed one.
A paired difference test, better known as a paired comparison, is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for ...
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
I edited the top parts of this page to make it more parallel to the t-test page, which defines a t-test as being any test for which the test statistic follows a t-distribution (rather than just covering the one-sample and two-sample t-tests). Nevertheless, I agree that the one-sample/two-sample tests need to be covered in detail.