Search results
Results from the WOW.Com Content Network
Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
The formula given for 'Z' here is: Z = [ (x-μ)/σ ] Where: x is the raw score (the sample mean being tested) μ is the mean of the population; σ is the standard deviation of the population; s is the standard deviation of the sample; But, isn't that incorrect? The actual formula is the following: Z = [ (x-μ) / [σ/SqareRoot(N, the sample-size) ]
A normal quantile plot for a simulated set of test statistics that have been standardized to be Z-scores under the null hypothesis. The departure of the upper tail of the distribution from the expected trend along the diagonal is due to the presence of substantially more large test statistic values than would be expected if all null hypotheses were true.
Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive categories. The definition of is =, where p o is the relative observed agreement among raters, and p e is the hypothetical probability of chance agreement, using the observed data to calculate the probabilities of each observer randomly selecting each category.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The Z-factor defines a characteristic parameter of the capability of hit identification for each given assay. The following categorization of HTS assay quality by the value of the Z-Factor is a modification of Table 1 shown in Zhang et al. (1999); [2] note that the Z-factor cannot exceed one.