enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...

  3. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule), but the method can be generalized to division by any polynomial.

  4. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  5. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [1] Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each .

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...

  7. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    If k > 1, one can decompose further, by using that an irreducible polynomial is a square-free polynomial, that is, is a greatest common divisor of the polynomial and its derivative. If G ′ {\displaystyle G'} is the derivative of G , Bézout's identity provides polynomials C and D such that C G + D G ′ = 1 {\displaystyle CG+DG'=1} and thus F ...

  8. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that. and either R = 0 or the degree of R is lower than the degree of B. These conditions uniquely define Q and R ...

  9. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    is a horizontal line with y-intercept a0. The graph of a degree 1 polynomial (or linear function) f(x) = a0 + a1x, where a1 ≠ 0, is an oblique line with y-intercept a0 and slope a1. The graph of a degree 2 polynomial. f(x) = a0 + a1x + a2x2, where a2 ≠ 0. is a parabola. The graph of a degree 3 polynomial.