Search results
Results from the WOW.Com Content Network
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 2 , − 8 5 , −8 5 , and 8 −5 .
Any improper rational fraction can be expressed as the sum of a polynomial (possibly constant) and a proper rational fraction. In the first example of an improper fraction one has + + + = (+) + +, where the second term is a proper rational fraction. The sum of two proper rational fractions is a proper rational fraction as well.
Rational function. In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field K.
Irreducible fraction. An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1] In other words, a fraction a b is irreducible if and only if a and ...
This page was last edited on 23 June 2020, at 13:35 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may ...
In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ ləˈplɑːs /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane). The transform is useful for converting ...
Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator. and of the integration operator [Note 1] and developing a calculus for such operators generalizing the classical one.