Search results
Results from the WOW.Com Content Network
The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows: [3] Deduce the candidate of zero of the polynomial from its leading coefficient and constant term .
where Q(x) is the quotient of Euclidean division of P(x) = 0 by the linear (degree one) factor x – r. If the coefficients of P(x) are real or complex numbers, the fundamental theorem of algebra asserts that P(x) has a real or complex root. Using the factor theorem recursively, it results that
Factorization of polynomials. In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of ...
Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...
The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid 's Elements. If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers. — Euclid, Elements Book VII, Proposition 30.
Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...
2-factor theorem. In the mathematical discipline of graph theory, the 2-factor theorem, discovered by Julius Petersen, is one of the earliest works in graph theory. It can be stated as follows: [1] Let G be a regular graph whose degree is an even number, 2 k. Then the edges of G can be partitioned into k edge-disjoint 2-factors.
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: That difference is algebraically factorable as ; if neither factor equals one, it is a proper factorization of N. Each odd number has such a representation. Indeed, if is a factorization of N, then.