Search results
Results from the WOW.Com Content Network
Generating function. In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating ...
In probability theory, the probability generating function of a discrete random variable is a power series representation (the generating function) of the probability mass function of the random variable. Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr (X = i) in the ...
Generating function (physics) In physics, and more specifically in Hamiltonian mechanics, a generating function is, loosely, a function whose partial derivatives generate the differential equations that determine a system's dynamics. Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which ...
Moment-generating function. In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or ...
The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences.
Definition. The geometric distribution is the discrete probability distribution that describes when the first success in an infinite sequence of independent and identically distributed Bernoulli trials occurs. Its probability mass function depends on its parameterization and support.
The Hermite polynomials (probabilist's or physicist's) form an orthogonal basis of the Hilbert space of functions satisfying in which the inner product is given by the integral including the Gaussian weight function w(x) defined in the preceding section. An orthogonal basis for L2 (R, w (x) dx) is a complete orthogonal system.
Cumulant. In probability theory and statistics, the cumulants κn of a probability distribution are a set of quantities that provide an alternative to the moments of the distribution. Any two probability distributions whose moments are identical will have identical cumulants as well, and vice versa. The first cumulant is the mean, the second ...