Search results
Results from the WOW.Com Content Network
The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). [3] As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11° with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of Earth.
Study of Earth's magnetosphere began in 1600, when William Gilbert discovered that the magnetic field on the surface of Earth resembled that of a terrella, a small, magnetized sphere. In the 1940s, Walter M. Elsasser proposed the model of dynamo theory, which attributes Earth's magnetic field to the motion of Earth's iron outer core.
This was at a distance of 121 AU (1.81 × 10 10 km) from the Sun. [38] Contrary to predictions, data from Voyager 1 indicates the magnetic field of the galaxy is aligned with the solar magnetic field. [39] On November 5, 2018, the Voyager 2 mission detected a sudden decrease in the flux of low-energy ions. At the same time, the level of cosmic ...
The sun’s intense magnetic energy is the source of solar flares and eruptions of plasma known as coronal mass ejections. When directed toward Earth, they can create stunning auroras but also ...
The spacing between field lines is an indicator of the relative strength of the magnetic field. Where magnetic field lines converge the field grows stronger, and where they diverge, weaker. Now, it can be shown that in the motion of gyrating particles, the "magnetic moment" μ = W ⊥ /B (or relativistically, p ⊥ 2 /2mγB) stays very nearly ...
Earth's two main belts extend from an altitude of about 640 to 58,000 km (400 to 36,040 mi) [3] above the surface, in which region radiation levels vary. The belts are in the inner region of Earth's magnetic field. They trap energetic electrons and protons. Other nuclei, such as alpha particles, are less prevalent.
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
The coolest of these, 2MASS J10475385+2124234 with a temperature of 800-900 K, retains a magnetic field stronger than 1.7 kG, making it some 3000 times stronger than the Earth's magnetic field. [18] Radio observations also suggest that their magnetic fields periodically change their orientation, similar to the Sun during the solar cycle .