Search results
Results from the WOW.Com Content Network
[nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way".
Average distance from the Sun — Earth: 1.00 — Average distance of Earth's orbit from the Sun (sunlight travels for 8 minutes and 19 seconds before reaching Earth) — Mars: 1.52 — Average distance from the Sun — Jupiter: 5.2 — Average distance from the Sun — Light-hour: 7.2 — Distance light travels in one hour — Saturn: 9.5 ...
Evolution of the solar luminosity, radius and effective temperature compared to the present-day Sun. After Ribas (2009) [3] The uncrewed SOHO spacecraft was used to measure the radius of the Sun by timing transits of Mercury across the surface during 2003 and 2006. The result was a measured radius of 696,342 ± 65 kilometres (432,687 ± 40 miles).
Thus 4 minutes (more precisely 3 minutes, 56 seconds), in the equation of time, are represented by the same distance as 1° in the declination, since Earth rotates at a mean speed of 1° every 4 minutes, relative to the Sun. An analemma is drawn as it would be seen in the sky by an observer looking upward.
The Sun, taking along the whole Solar System, orbits the galaxy's center of mass at an average speed of 230 km/s (828,000 km/h) or 143 mi/s (514,000 mph), [167] taking about 220–250 million Earth years to complete a revolution (a Galactic year), [168] having done so about 20 times since the Sun's formation.
Average distance from the Earth to the Moon is about 1.282 light-seconds light-minute 60 light-seconds = 1 light-minute 17 987 547 480 m: 1.799 × 10 7 km: 1.118 × 10 7 miles: Average distance from the Earth to the Sun is 8.317 light-minutes light-hour 60 light-minutes = 3600 light-seconds 1 079 252 848 800 m: 1.079 × 10 9 km: 6.706 × 10 8 miles
For premium support please call: 800-290-4726 more ways to reach us
Because right ascensions are measured in hours (of rotation of the Earth), they can be used to time the positions of objects in the sky. For example, if a star with RA = 1 h 30 m 00 s is at its meridian, then a star with RA = 20 h 00 m 00 s will be on the/at its meridian (at its apparent highest point) 18.5 sidereal hours later.