Search results
Results from the WOW.Com Content Network
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
This characterization is used to specify intervals by mean of interval notation, which is described below. An open interval does not include any endpoint, and is indicated with parentheses. [2] For example, (,) = {< <} is the interval of all real numbers greater than 0 and less than 1.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
The traditional notations used in the previous section do not distinguish the original function : from the image-of-sets function : (); likewise they do not distinguish the inverse function (assuming one exists) from the inverse image function (which again relates the powersets). Given the right context, this keeps the notation light and ...
It is the set Y in the notation f: X → Y. The term range is sometimes ambiguously used to refer to either the codomain or the image of a function. A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1]
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]