Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
It is also a useful for getting an impression of the size of a rocket: while two rockets with mass fractions of, say, 92% and 95% may appear similar, the corresponding mass ratios of 12.5 and 20 clearly indicate that the latter system requires much more propellant. Typical multistage rockets have mass ratios
From the equation for uniform linear acceleration, the distance covered = + for initial speed =, constant acceleration (acceleration due to gravity without air resistance), and time elapsed , it follows that the distance is proportional to (in symbols, ), thus the distance from the starting point are consecutive squares for integer values of time elapsed.
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The speed attained during free fall is proportional to the elapsed time, and the distance traveled is proportional to the square of the elapsed time. [40] Importantly, the acceleration is the same for all bodies, independently of their mass.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The mean speed theorem, also known as the Merton rule of uniform acceleration, [1] was discovered in the 14th century by the Oxford Calculators of Merton College, and was proved by Nicole Oresme. It states that a uniformly accelerated body (starting from rest, i.e. zero initial velocity) travels the same distance as a body with uniform speed ...