enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model, such as a linear ...

  3. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    It is calculated as the sum of squares of the prediction residuals for those observations. [1] [2] [3] Specifically, the PRESS statistic is an exhaustive form of cross-validation, as it tests all the possible ways that the original data can be divided into a training and a validation set.

  4. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    If that sum of squares is divided by n, the number of observations, the result is the mean of the squared residuals. Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n , where df is the number of degrees of freedom ( n ...

  5. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    In statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well.

  6. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.

  7. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  8. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    See Lack-of-fit sum of squares. The hypothesis that a data set in a regression analysis follows the simpler of two proposed linear models that are nested within each other. Multiple-comparison testing is conducted using needed data in already completed F-test, if F-test leads to rejection of null hypothesis and the factor under study has an ...

  9. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    where RSS is the residual sum-of-squares measured on the training data and N is the number of observations (the number of rows in the x matrix). The effective number of parameters is defined as (effective number of parameters) = (number of mars terms) + (penalty) · ((number of Mars terms) − 1 ) / 2