enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  3. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number.For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10.

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  5. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    The full formula, together with precise estimates of its error, can be derived as follows. Instead of approximating !, one considers its natural logarithm, as this is a slowly varying function: ⁡ (!) = ⁡ + ⁡ + + ⁡.

  6. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The logarithm of the gamma function satisfies the following formula due to Lerch: ⁡ = ′ (,) ′ (), where is the Hurwitz zeta function, is the Riemann zeta function and the prime (′) denotes differentiation in the first variable.

  7. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The different units of information (bits for the binary logarithm log 2, nats for the natural logarithm ln, bans for the decimal logarithm log 10 and so on) are constant multiples of each other. For instance, in case of a fair coin toss, heads provides log 2 (2) = 1 bit of information, which is approximately 0.693 nats or 0.301 decimal digits.

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    For example, the log-normal function with such fits well with the size of secondarily produced droplets during droplet impact [56] and the spreading of an epidemic disease. [ 57 ] The value σ = 1 / 6 {\textstyle \sigma =1{\big /}{\sqrt {6}}} is used to provide a probabilistic solution for the Drake equation.

  9. Baby-step giant-step - Wikipedia

    en.wikipedia.org/wiki/Baby-step_giant-step

    Alternatively one can use Pollard's rho algorithm for logarithms, which has about the same running time as the baby-step giant-step algorithm, but only a small memory requirement. While this algorithm is credited to Daniel Shanks, who published the 1971 paper in which it first appears, a 1994 paper by Nechaev [ 3 ] states that it was known to ...