enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.

  3. Scattering - Wikipedia

    en.wikipedia.org/wiki/Scattering

    Scattering also includes the interaction of billiard balls on a table, the Rutherford scattering (or angle change) of alpha particles by gold nuclei, the Bragg scattering (or diffraction) of electrons and X-rays by a cluster of atoms, and the inelastic scattering of a fission fragment as it traverses a thin foil.

  4. Dynamical theory of diffraction - Wikipedia

    en.wikipedia.org/wiki/Dynamical_theory_of...

    The dynamical theory of diffraction considers the wave field in the periodic potential of the crystal and takes into account all multiple scattering effects. Unlike the kinematic theory of diffraction which describes the approximate position of Bragg or Laue diffraction peaks in reciprocal space , dynamical theory corrects for refraction, shape ...

  5. Annular dark-field imaging - Wikipedia

    en.wikipedia.org/wiki/Annular_dark-field_imaging

    The large maximum diffraction angle is necessary to account for materials that show Bragg scattering at high angles, such as many crystalline materials. The high maximum diffraction angle allows for good separation between Bragg and Rutherford scattered electrons, therefore the maximum diffraction angle of the microscope needs to be as large as ...

  6. Momentum transfer - Wikipedia

    en.wikipedia.org/wiki/Momentum_transfer

    The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...

  7. Wide-angle X-ray scattering - Wikipedia

    en.wikipedia.org/wiki/Wide-angle_X-ray_scattering

    In X-ray crystallography, wide-angle X-ray scattering (WAXS) or wide-angle X-ray diffraction (WAXD) is the analysis of Bragg peaks scattered to wide angles, which (by Bragg's law) are caused by sub-nanometer-sized structures. [1] It is an X-ray-diffraction [2] method and commonly used to determine a range of information about crystalline materials.

  8. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    Consider the scattering of a beam of wavelength by an assembly of particles or atoms stationary at positions , =, …,.Assume that the scattering is weak, so that the amplitude of the incident beam is constant throughout the sample volume (Born approximation), and absorption, refraction and multiple scattering can be neglected (kinematic diffraction).

  9. Ptychography - Wikipedia

    en.wikipedia.org/wiki/Ptychography

    In conventional imaging, multiple scattering in a thick sample can seriously complicate, or even entirely invalidate, simple interpretation of an image. This is especially true in electron imaging (where multiple scattering is called "dynamical scattering"). Conversely, ptychography generates estimates of hundreds or thousands of exit waves ...