Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Download as PDF; Printable version; Redirect to: Pressure–volume diagram This page was last edited on 17 May 2024, at 22:13 (UTC). Text is available ...
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The diagram also shows how human water use impacts where water is stored and how it moves. [1] The water cycle (or hydrologic cycle or hydrological cycle) is a biogeochemical cycle that involves the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time.
The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation. [2] The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment.
Thermodynamic diagrams are diagrams used to represent the thermodynamic states of a material (typically fluid) and the consequences of manipulating this material. For instance, a temperature– entropy diagram ( T–s diagram ) may be used to demonstrate the behavior of a fluid as it is changed by a compressor.
The PV diagram is a particularly useful visualization of a quasi-static process, because the area under the curve of a process is the amount of work done by the system during that process. Thus work is considered to be a process variable , as its exact value depends on the particular path taken between the start and end points of the process.