Search results
Results from the WOW.Com Content Network
Gravity on the Earth's surface varies by around 0.7%, from 9.7639 m/s 2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s 2 at the surface of the Arctic Ocean. [6] In large cities, it ranges from 9.7806 m/s 2 [ 7 ] in Kuala Lumpur , Mexico City , and Singapore to 9.825 m/s 2 in Oslo and Helsinki .
G = 6.673 × 10 −11 Nm 2 /kg 2 is the gravitational constant, m = 5.975 × 10 24 kg is the mass of the earth, a = 6.378 × 10 6 m is the average radius of the earth, z is the geometric height in meters
The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...
Gravity gradiometry is the study of variations in the Earth's gravity field via measurements of the spatial gradient of gravitational acceleration. The gravity gradient tensor is a 3x3 tensor representing the partial derivatives, along each coordinate axis , of each of the three components of the acceleration vector ( g = [ g x g y g z ] T ...
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [ 2 ] [ 3 ] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2 ), [ 4 ] depending on altitude , latitude , and ...
Earth’s magnetic field yanks at this solid ball of hot metal, making it spin. At the same time, the gravity and flow of the fluid outer core and mantle drag at the core.
For example, the equation above gives the acceleration at 9.820 m/s 2, when GM = 3.986 × 10 14 m 3 /s 2, and R = 6.371 × 10 6 m. The centripetal radius is r = R cos( φ ) , and the centripetal time unit is approximately ( day / 2 π ), reduces this, for r = 5 × 10 6 metres, to 9.79379 m/s 2 , which is closer to the observed value.
Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The magnitude of the field at every point is calculated by applying the universal law, and represents the force per unit mass on any object at that point in space.