Search results
Results from the WOW.Com Content Network
With respect to general linear maps, linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other part of mathematics.
Linear algebra is the branch of mathematics concerned with the study of vectors, vector spaces (also called linear spaces), linear maps (also called linear transformations), and systems of linear equations. Vector spaces are a central theme in modern mathematics; thus, linear algebra is widely used in both abstract algebra and functional analysis.
1.3 Linear algebra. 1.4 Group theory. 1.5 Polynomials. ... Ky Fan lemma (combinatorial geometry) Graph theory. Berge's lemma; Counting lemma; Crossing lemma ...
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory
Linear systems are a fundamental part of linear algebra, a subject used in most modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics.
In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation .